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a b s t r a c t

The exact dynamic analysis of plane frames should consider the effect of mass

distribution in beam elements, which can be achieved by using the dynamic stiffness

method. Solving for the natural frequencies and mode shapes from the dynamic

stiffness matrix is a nonlinear eigenproblem. The Wittrick–Williams algorithm is a

the mode shapes is presented. The dynamic stiffness matrix may create some null

modes in which the joints of beam elements have null deformation. Adding an interior

node at the middle of beam elements can eliminate the null modes of flexural vibration,

but does not eliminate the null modes of axial vibration. A force equilibrium approach

to solve for the null modes of axial vibration is presented. Orthogonal conditions of

vibration modes in the Bernoulli–Euler plane frames, which are required in solving the

transient response, are theoretically derived. The decoupling process for the vibration

modes of the same natural frequency is also presented.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of a beam element can be modeled as a continuous-coordinate system and solved from the differential
equation of motion and the related boundary conditions. Vibration of a plane frame, which is an assemblage of beam
elements, is usually analyzed by a discrete-coordinate system in which the stiffness matrix is established through the
static equilibrium equation of beam elements; the mass matrix may be formed either by lumping the mass at the
structural joints, called the lumped-mass method, or from the static-deformed shape functions of beam elements, called
the consistent-mass method. The solutions of the discrete models only approximate the actual dynamic behavior. Craig [1]
compared the natural frequencies of a uniform cantilever beam from the exact continuous model and the two discrete
models approximated by the lumped-mass method and the consistent-mass method, which revealed that the accuracy of
the natural frequencies calculated by the discrete models deteriorates in the higher modes. The continuous-model
approach utilized in the dynamic analysis of a single beam element is recognized to not be feasible for the dynamic
analysis of plane frames because the necessary boundary conditions become unmanageable [2].

From the differential equation of beam vibration, the relationships between harmonic forces and displacements at the
ends of a beam element can be exactly established. These relations are usually referred to as the dynamic stiffness matrix.
The elements in the dynamic stiffness matrix are nonlinear functions, trigonometric and hyperbolic, of vibration frequency.
By expanding the dynamic stiffness matrix in Taylor’s series, Paz [3] demonstrated that the first term of the series, the zero
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power of frequency, is the static stiffness matrix, and the second term of the series, the second power of frequency, is the
consistent mass matrix. After the dynamic stiffness matrices of beam elements are derived, the dynamic stiffness matrix of
the whole frame can be assembled by exactly the same procedure used in the static matrix structural analysis. The
historical development of using the dynamic stiffness matrix in structural dynamics has been highlighted by Akesson [4].

The dynamic stiffness matrix, which is frequency-dependent, can be directly employed in solving the steady-state
response of the frames subjected to harmonic loadings. To solve the problems of transient response, the natural
frequencies and mode shapes of the frames must be first calculated from the dynamic stiffness matrix. The calculation is
usually referred to as a nonlinear eigenproblem and is different from the linear eigenproblem encountered in the dynamic
analysis of discrete systems. Extending the Sturm sequence property of linear eigenproblems, the Wittrick–Williams
algorithm [5,6] can count the number of vibration modes exceeded by a specified frequency from the dynamic stiffness
matrix. This ensures that no natural frequencies are missed when using the bisection or other methods [7] to solve the zero
determinant equation of the dynamic stiffness matrix.

The orthogonality of vibration modes is the required condition of using the vibration modes to solve the transient
response of the frames. Although the derivation of orthogonal conditions for the vibration modes in discrete systems can
be easily found in textbooks of structural dynamics [1,2], the publications on the orthogonality of vibration modes
employed in the dynamic stiffness matrix are few and less rigorous [8]. The present paper derives the mode orthogonality
conditions of the Bernoulli–Euler plane frame with distributed mass for the modes of different natural frequencies. Using
the mode orthogonality, the equations of motion, in terms of structural joint deformation, can be transformed into the
decoupled equations of motion in terms of vibration mode amplitudes. Not every vibration mode has distinct natural
frequency. Sometimes several modes may have the same natural frequency, which are called the modes of repeated roots.
The decoupling process for the modes of repeated roots is also derived in this paper.

There are several methods to solve the mode shapes from the dynamic stiffness matrix [9]. However, these methods
have been shown not to be very stable [10]. A deflated matrix approach to solve the mode shapes from the dynamic
stiffness matrix is proposed in the present paper, which is also extended to find the orthogonal mode shapes of the
repeated-root modes.

In the vibration of frames considering the effect of distributed mass, a special set of vibration modes may occur in which
the deformations at all frame joints are null but the deformations in beam elements are not null. This set of vibration
modes is called the null modes here. The null mode shapes cannot be directly solved from the dynamic stiffness matrix.
Dias and Alves [11] included the degrees of freedom at the joints of beam elements and the constants in the shape
functions of beam elements in the eigenproblem, which can eliminate the null modes but has to pay the price of an
increased matrix order. The null modes relating to flexural vibration can be easily removed by adding an interior node at
the middle of beam elements [10]. For the null modes relating to axial vibration, adding the interior node cannot eliminate
the null modes completely. An efficient approach by use of the force equilibrium is presented in this paper.

2. Dynamic stiffness matrices

The prismatic beam element shown in Fig. 1 has length L, cross-sectional area A, second moment of area I, Young’s
modulus E, and density r. When the beam is vibrating at a specific frequency o, the axial displacement in the x direction, u,
and the transverse displacement in the y direction, v, can be expressed as

uðx,tÞ ¼ wðxÞeiot , vðx,tÞ ¼cðxÞeiot (1)

in which w is the axial shape function, c is the transverse shape function, and t is time variable. Dynamic equilibrium of the
Bernoulli–Euler beam gives

wðxÞ ¼ a1 cosaxþa2 sinax (2)

cðxÞ ¼ b1 cosbxþb2 sinbxþb3 coshbxþb4 sinhbx (3)

with

a¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrAÞ=ðEAÞ

p
, b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrAÞ=ðEIÞ4

p ffiffiffiffiffi
o
p

(4)

The relation between the constants ai and the axial displacements at the beam ends, w(0) and w(L), can be solved from
Eq. (2). The relation between the constants bi and the transverse displacements and slopes at the beam ends, cð0Þ, c0ð0Þ,
cðLÞ and c0ðLÞ, can be solved from Eq. (3).
Fig. 1. Positive directions of force components in a beam element: (a) end forces and (b) internal forces.
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The axial force N, bending moment M, and shear force V in the prismatic Bernoulli–Euler beam have the following
relations with the axial and transverse displacements:

NðxÞ ¼ EAw0ðxÞ, MðxÞ ¼ EIc
00

ðxÞ, VðxÞ ¼ EIc
000

ðxÞ (5)

Let N0, M0, V0, w0, c0 and y0 denote the axial force, bending moment, shear force, axial displacement, transverse
displacement and slope, respectively, at the beam end of x=0, and N1, M1, V1, w1, c1 and y1 be the corresponding quantities
at the beam end of x=L. The positive directions of the end forces and internal forces are shown in Fig. 1, which give the
relations

N0 ¼�Nð0Þ, M0 ¼�Mð0Þ, V0 ¼ Vð0Þ, w0 ¼ wð0Þ, c0 ¼cð0Þ, y0 ¼c0ð0Þ (6)

N1 ¼NðLÞ, M1 ¼MðLÞ, V1 ¼�VðLÞ, w1 ¼ wðLÞ, c1 ¼cðLÞ, y1 ¼c0ðLÞ (7)

Substituting Eqs. (2) and (3) into Eq. (5) and using the relations in Eqs. (6) and (7), the dynamic stiffness of the Bernoulli–
Euler beam can be derived:

N0

V0

M0

N1

V1

M1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ EI
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3
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w0

c0

y0

w1

c1

y1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(8)

with B0=1�cosbL coshbL, B1=sinbL coshbL+cosbL sinhbL, B2=sinbL coshbL�cosbL sinhbL, B3=sinbL sinhbL, B4=sinh
bL+sinbL, B5=sinhbL�sinbL, B6=coshbL�cosbL

The plane frame shown in Fig. 2 is defined by a global coordinate system ðx,yÞ. Let ui, vi and yi denote the displacements
in the x and y directions and the rotation, respectively, at joint i. Let X i, Y i and Mi denote the forces in the x and y directions
and the moment, respectively, acting at the joint i of the element J. The total number of the unconstrained degrees of
freedom in the joints of the frame is denoted as nd.

The dynamic stiffness matrix in Eq. (8) can be transformed to the element stiffness matrix in the global coordinate
system. The global stiffness matrices of all elements in the frame are then assembled to form the frame stiffness matrix
KðoÞ by means of the direct stiffness method, which yields

KðoÞd¼ 0 (9)

in which KðoÞ is a nd�nd matrix and is a function of frequency, and d is the displacement vector of the unconstrained
degrees of freedom in the joints of the frame.

3. Orthogonality of mode shape functions

After the nth mode shape vector dn of the frame is solved, the axial and transverse shape functions of element J in the
nth mode, wJn and cJn, respectively, can be derived from Eqs. (2) and (3). The equations of motion for element J vibrating in
the nth mode with natural frequency on are

�ðEAÞJ
d2wJn

dx2
J

�ðrAÞJo2
nwJn ¼ 0 (10)
Fig. 2. External loads acting on a plane frame: (a) nodal loads and (b) element loads.
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ðEIÞJ
d4cJn

dx4
J

�ðrAÞJo2
ncJn ¼ 0 (11)

in which (EA)J, (EI)J, (rA)J and xJ are the axial stiffness, flexural stiffness, mass per unit length, and axial coordinate of
element J, respectively. After multiplying Eqs. (10) and (11) by the axial and transverse shape functions of element J in the
mth mode, respectively, and then integrating the summation of the two equations through the element length LJ, the
summation of the integrations of all elements leads to

X
J

Z LJ

0
cJm ðEIÞJc

IV
Jn�ðrAÞJo2

ncJn

h i
�wJm ðEAÞJw

00

JnþðrAÞJo2
nwJn

h in o
dxJ ¼ 0 (12)

which becomes, through integration by part,

X
J

Z LJ

0
fðEIÞJc

00

Jmc
00

JnþðEAÞJw0Jmw
0
Jn�o

2
nðrAÞJðcJmcJnþwJmwJnÞgdxJ ¼

X
J

ð�cJmVJnþc
0

JmMJnþwJmNJnÞj
LJ

0 (13)

The right side of Eq. (13) can be expressed in vector form by using the notation similar to Eqs. (6) and (7):

X
J

ð�cJmVJnþc
0

JmMJnþwJmNJnÞj
LJ

0 ¼
X

J

ðw1ÞJm

ðc1ÞJm

ðy1ÞJm

8><
>:

9>=
>;

T
ðN1ÞJn

ðV1ÞJn

ðM1ÞJn

8><
>:

9>=
>;þ

ðw0ÞJm

ðc0ÞJm

ðy0ÞJm

8><
>:

9>=
>;

T
ðN0ÞJn

ðV0ÞJn

ðM0ÞJn

8><
>:

9>=
>;

0
BB@

1
CCA (14)

The transformation between the element local coordinates and the frame global coordinates gives, with T being the
transformation matrix:

ðw0ÞJm

ðc0ÞJm

ðy0ÞJm

8><
>:

9>=
>;

T
ðN0ÞJn

ðV0ÞJn

ðM0ÞJn

8><
>:

9>=
>;¼

ðuiÞm

ðviÞm

ðyiÞm

8><
>:

9>=
>;

T

TT T

ðX iÞJn

ðY iÞJn

ðMiÞJn

8>><
>>:

9>>=
>>;¼

ðuiÞm

ðviÞm

ðyiÞm

8><
>:

9>=
>;

T ðX iÞJn

ðY iÞJn

ðMiÞJn

8>><
>>:

9>>=
>>; (15)

which means

X
J

ðw1ÞJm

ðc1ÞJm

ðy1ÞJm

8><
>:

9>=
>;

T
ðN1ÞJn

ðV1ÞJn

ðM1ÞJn

8><
>:

9>=
>;þ

ðw0ÞJm

ðc0ÞJm

ðy0ÞJm

8><
>:

9>=
>;

T
ðN0ÞJn

ðV0ÞJn

ðM0ÞJn

8><
>:

9>=
>;

0
BB@

1
CCA¼X

i

ðuiÞm

ðviÞm

ðyiÞm

8><
>:

9>=
>;

TX
J2i

ðX iÞJn

ðY iÞJn

ðMiÞJn

8>><
>>:

9>>=
>>;

0
BB@

1
CCA¼ 0 (16)

where the element J 2 i means the element connecting to node i. Without any external force acting at node i, the internal
end forces of all the elements connecting to node i are in balance, which leads to zero in the above equation. Using Eq. (16),
Eq. (13) becomes

X
J

Z LJ

0
ðEIÞJc

00

Jmc
00

JnþðEAÞJw0Jmw
0
Jn�o

2
nðrAÞJðcJmcJnþwJmwJnÞ

n o
dxJ ¼ 0 (17)

Multiplying the equations of axial and transverse motions of element J vibrating in the mth mode by the axial and
transverse shape functions of element J in the nth mode, respectively, the following equation can be established:

X
J

Z LJ

0
cJn ðEIÞJc

IV
Jm�ðrAÞJo2

mcJm

h i
�wJn ðEAÞJw

00

JmþðrAÞJo2
mwJm

h in o
dxJ ¼ 0 (18)

Using the similar procedure described in the last paragraph, the following equation is derived:

X
J

Z LJ

0
ðEIÞJc

00

Jnc
00

JmþðEAÞJw0Jnw
0
Jm�o

2
mðrAÞJðcJncJmþwJnwJmÞ

n o
dxJ ¼ 0 (19)

Subtracting Eq. (17) from Eq. (19) gives the following mass-related orthogonal equation of mode shapes:

X
J

ðrAÞJ

Z LJ

0
ðcJmcJnþwJmwJnÞdxJ ¼ 0 for omaon (20)

The stiffness-related orthogonal equation is derived by substituting Eq. (20) into Eq. (17):

X
J

Z LJ

0
fðEIÞJc

00

Jmc
00

JnþðEAÞJw0Jmw
0
JngdxJ ¼ 0 for omaon (21)

Bringing in Eq. (20), Eq. (12) gives another form of the stiffness-related orthogonal equation:

X
J

Z LJ

0
fðEIÞJcJmc

IV
Jn�ðEAÞJwJmw

00

JngdxJ ¼ 0 for omaon (22)
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By setting m=n in Eq. (12), the natural frequency and mode shape has the relation as

X
J

Z LJ

0
ðEIÞJcJnc

IV
Jn�ðEAÞJwJnw

00

Jn

h i
dxJ ¼o2

n

X
J

Z LJ

0
ðrAÞJ c2

Jnþw
2
Jn

� �
dxJ (23)

4. Equations of motion for generalized coordinates

The damping property of the frame can be described through two parameters, z and Z, where z is the stiffness-related
viscous damping ratio and Z is the mass-related viscous damping ratio. When element J is subjected to distributed loads in
the axial and transverse directions, denoted as fJ and gJ, respectively, as shown in Fig. 2, the equations of motion for
element J with viscous damping are

�ðEAÞJ
q2uJ

qx2
J

þz
q3uJ

qx2
J qt

 !
þðrAÞJ

q2uJ

qt2
þZ

quJ

qt

 !
¼ fJðxJ ,tÞ (24)

ðEIÞJ
q4vJ

qx4
J

þz
q5vJ

qx4
J qt

 !
þðrAÞJ

q2vJ

qt2
þZ

qvJ

qt

 !
¼ gJðxJ ,tÞ (25)

The displacements of force vibration can be expressed as the linear combination of all mode shapes

uJðxJ ,tÞ ¼
X1
k ¼ 1

wJkðxJÞqkðtÞ (26)

vJðxJ ,tÞ ¼
X1
k ¼ 1

cJkðxJÞqkðtÞ (27)

in which the generalized coordinate qk represents the amplitude of the kth mode. If the frame has a virtual displacement as
the nth mode shape, the theory of virtual work gives

X
J

Z LJ

0
cJn

X1
k ¼ 1

ðEIÞJc
IV
Jk ðqkþz _qkÞþðrAÞJcJkð €qkþZ _qkÞ

h i
dxJþ

X
J

Z LJ

0
wJn

X1
k ¼ 1

�ðEAÞJw
00

Jkðqkþz _qkÞþðrAÞJwJkð €qkþZ _qkÞ

h i
dxJ

¼
X

J

Z LJ

0
ðcJngJþwJnfJÞdxJþ

X
i

ðuiÞnPxiþðviÞnPyiþðyiÞnQ i

h i
(28)

in which Pxi, Pyi and Q i are the horizontal force, vertical force and moment, respectively, externally acting at node i as
shown in Fig. 2, and ðuiÞn, ðviÞn and ðyiÞn are the displacements in the x and y directions and the rotation at node i,
respectively, of the nth mode shape.

If the nth mode is single root, i.e. onaok for nak, Eq. (28) can be decoupled by using the orthogonal conditions in
Eqs. (20) and (22):

X
J

Z LJ

0
ðEIÞJcJnc

IV
Jn�ðEAÞJwJnw

00

Jn

h i
dxJ

�
ðqnþz _qnÞþ

X
J

Z LJ

0
ðrAÞJðc

2
Jnþw

2
JnÞdxJ

�
ð €qnþZ _qnÞ ¼ pnðtÞ

((
(29)

in which pn is the generalized force of the nth mode, defined as

pnðtÞ ¼
X

J

Z LJ

0
ðcJngJþwJnfJÞdxJþ

X
i

ðuiÞnPxiþðviÞnPyiþðyiÞnQ i

h i
(30)

By using Eq. (23), Eq. (29) can be simplified as

€qnþðZþo2
nzÞ _qnþo2

nqn ¼
pnðtÞ

mnn
(31)

in which mnn is the generalized mass of the nth mode, defined as

mnn ¼
X

J

Z LJ

0
ðrAÞJðc

2
Jnþw

2
JnÞdxJ (32)

The solution of the mode amplitude in Eq. (31) is a Duhamel integral.

5. Vibration modes of repeated roots

The equation of motion in Eq. (31) is derived for the modes of single root. For the modes of repeated roots, Eq. (28)
cannot be decoupled. Let the modes between the cth mode and the dth mode be the repeated-root mode with the same
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frequency oc. Using the orthogonal conditions in Eqs. (20) and (22), Eq. (28) gives, for crnrd,

X
J

Z LJ

0
cJn

Xd

k ¼ c

ðEIÞJc
IV
Jk ðqkþz _qkÞþðrAÞJcJkð €qkþZ _qkÞ

h i
dxJþ

X
J

Z LJ

0
wJn

Xd

k ¼ c

�ðEAÞJw
00

Jkðqkþz _qkÞþðrAÞJwJkð €qkþZ _qkÞ

h i
dxJ ¼ pnðtÞ

(33)

which can be rearranged as

Xd

k ¼ c

X
J

Z LJ

0
ðEIÞJcJnc

IV
Jk�ðEAÞJwJnw

00

Jk

h i
dxJðqkþz _qkÞþ

Xd

k ¼ c

X
J

ðrAÞJ

Z LJ

0
ðcJncJkþwJnwJkÞdxJð €qkþZ _qkÞ ¼ pnðtÞ (34)

Eq. (12) can be expressed as

X
J

Z LJ

0
ðEIÞJcJnc

IV
Jk�ðEAÞJwJnw

00

Jk

h i
dxJ ¼o2

k

X
J

ðrAÞJ

Z LJ

0
cJncJkþwJnwJk

h i
dxJ (35)

The substitution of Eq. (35) into Eq. (34) yields, for crnrd:

Xd

k ¼ c

X
J

ðrAÞJ

Z LJ

0
ðcJncJkþwJnwJkÞdxJ ½ €qkþðZþo2

c zÞ _qkþo2
c qk� ¼ pnðtÞ (36)

which can be expressed in the matrix form

mcc � � � mcd

^ & ^

mdc � � � mdd

2
64

3
75

€qcþðZþo2
c zÞ _qcþo2

c qc

^
€qdþðZþo2

c zÞ _qdþo2
c qd

8><
>:

9>=
>;¼

pcðtÞ

^

pdðtÞ

8><
>:

9>=
>; (37)

with the generalized mass term being

mnk ¼
X

J

Z LJ

0
ðrAÞJðcJncJkþwJnwJkÞdxJ (38)

The equations of motion for the repeated-root generalized coordinates can be decoupled as

€qcþðZþo2
c zÞ _qcþo2

c qc

^
€qdþðZþo2

c zÞ _qdþo2
c qd

8><
>:

9>=
>;¼

mcc � � � mcd

^ & ^

mdc � � � mdd

2
64

3
75
�1 pcðtÞ

^

pdðtÞ

8><
>:

9>=
>; (39)

6. Solution of natural frequencies

The dynamic stiffness matrix of beam elements has a characteristic of being infinite at particular frequencies.
The flexural dynamic stiffness in Eq. (8) becomes infinite when

B0ðoÞ ¼ 1�cosbL coshbL¼ 0 (40)

For a single beam having both ends clamped, i.e., cð0Þ ¼cðLÞ ¼c0ð0Þ ¼c0ðLÞ ¼ 0, to have a nontrivial shape function cðxÞ
defined in Eq. (3), Eq. (40) must be fulfilled. In other words, the frequencies solved from Eq. (40) are the natural frequencies
of flexural vibration in the beam element with both ends clamped, which will be called flexural poles here. The nth solution
of Eq. (40), obn, can be solved approximately by

cosbL¼ 1=coshbL� 0 as bLb1 (41)

which gives

obn � nþ
1

2

� �2 p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
(42)

Similarly, the axial dynamic stiffness in Eq. (8) becomes infinite when

A0ðoÞ ¼ sinaL¼ 0 (43)

For a single beam having both ends fixed in the axial direction, i.e., w(0)=w(L)=0, the shape function in Eq. (2) becomes

wðxÞ ¼ a2 sinax (44)

To have a nontrivial shape function, Eq. (43) must be fulfilled. In other words, the frequencies solved from Eq. (43) are the
natural frequencies of axial vibration in the beam element without axial displacement at ends, which will be called axial
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poles here. The nth solution of Eq. (43), oan, is

oan ¼ n
p
L

ffiffiffiffiffiffiffi
EA

rA

s
(45)

The difficulty in finding the natural frequencies of frames in Eq. (9) arises from the existence of element poles. This can
be overcome by using the Wittrick–Williams algorithm [5,6]. The algorithm states that nf(o), the total number of natural
frequencies in a frame below a specific frequency o, is given by

nf ðoÞ ¼ npðoÞþsfKðoÞg (46)

where np(o) is the total number of axial and flexural poles in all elements of the frame below the frequency o; s{K(o)}, the
sign count of K(o), is the number of negative pivots in the diagonal matrix of pivots D after K(o) is factorized as

KðoÞ ¼ LDLT (47)

in which L is a lower triangular matrix with all diagonal elements being unity.
By means of the bisection search method or other efficient methods [7], the natural frequencies of the frame can be

numerically solved from the determinant of the frame dynamic stiffness matrix

det KðoÞ ¼
Ynd

i ¼ 1

Dii ¼ 0 (48)

where Dii is the ith diagonal element in the pivot matrix D, in cooperation with Eq. (46) which can guarantee no natural
frequency being missed.

When searching the natural frequencies, it is usually necessary to find the number of vibration modes within a
frequency interval. If the most poles in every element of the frame are a flexural pole and a axial pole between the lower
frequency bound ol and the upper frequency bound ou, the Wittrick–Williams algorithm in Eq. (46) can be revised as

nf ðouÞ�nf ðolÞ ¼ sgn A0ðol,ouÞþsgn B0ðol,ouÞþsfKðouÞg�sfKðolÞg (49)

where sgn A0ðol,ouÞ is the total number of elements in which the signs of the functions A0ðolÞ and A0ðouÞ are different,
from + to � or from � to +, and sgn B0ðol,ouÞ is the total number of elements in which the signs of the functions B0ðolÞ

and B0ðouÞ are different.
The frequency difference between the n+1th and nth flexural poles of a beam element is, from Eq. (42),

obnþ1�obn � 2 nþ1ð Þ
p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
(50)

The frequency difference between the n+1th and nth axial poles of a beam element is, from Eq. (45),

oanþ1�oan ¼
p
L

ffiffiffiffiffiffiffi
EA

rA

s
(51)

If all the beam elements in the frame have the same section properties and same length, and the lower frequency bound ol

is

ol4obn � nþ
1

2

� �2 p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
(52)

the applicable frequency interval for Eq. (49) can be set by

ou�olomin 2n
p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
,
p
L

ffiffiffiffiffiffiffi
EA

rA

s( )
(53)

If some beam elements in the frame have different section properties or different lengths, the applicable frequency interval
for Eq. (49) in any frequency range can be made easier, but more conservative, by

ou�olomin
J

2
p2

L2
J

ffiffiffiffiffiffiffiffiffiffiffi
ðEIÞJ
ðrAÞJ

s
,
p
LJ

ffiffiffiffiffiffiffiffiffiffiffi
ðEAÞJ
ðrAÞJ

s( )
(54)

The approximate flexural poles solved from Eq. (41) may possess a larger error in the lower frequency. The exact
solutions of the first two flexural poles are

ob1 ¼ 22:3733
1

L2

ffiffiffiffiffiffiffi
EI

rA

s
4ð1:5Þ2

p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
¼ 22:2066

1

L2

ffiffiffiffiffiffiffi
EI

rA

s

ob2 ¼ 61:6728
1

L2

ffiffiffiffiffiffiffi
EI

rA

s
o ð2:5Þ2

p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
¼ 61:6850

1

L2

ffiffiffiffiffiffiffi
EI

rA

s
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The difference between the two poles is

ob2�ob1 ¼ 39:2995
1

L2

ffiffiffiffiffiffiffi
EI

rA

s
42

p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
¼ 19:7392

1

L2

ffiffiffiffiffiffiffi
EI

rA

s

which means that the frequency interval in Eq. (54) is still applicable.

7. Solution of mode shape vectors

The natural frequency of the nth mode, on, and the corresponding mode shape vector, dn, have the relation, from Eq. (9),

KðonÞdn ¼ 0 (55)

Theoretically, K(on) is singular. Numerically, even if K(on) is not singular, K(on) is still ill-conditioned. The mode shape
vector dn can be calculated through the deflated matrix approach. Let K lðonÞ be the (nd�1)� (nd�1) matrix deflated by
eliminating the lth row and lth column of K(on). The vector d l, which has (nd�1) dimensions, can be solved from

K lðonÞd l ¼�c l (56)

where cl, a vector of (nd�1) dimensions, is the lth column of K(on) with the lth element removed. The mode shape vector
dn is obtained by expanding the vector d l as

dn ¼ ½d1 d2 � � � dl�1 1 dl � � � dnd�1�
T (57)

where di is the ith element in the vector d l.
One good choice of the deflated position l is the location where the absolute value of the pivot is the minimum in the

pivot matrix D defined in Eq. (47). The accuracy of the calculated mode shape vector dn can be checked by the residual
vector r defined as

r¼KðonÞdn (58)

If the norm of the residual vector is too large, select another deflated location l.
For the modes having nr repeated roots, the space of the corresponding mode shape vectors is spanned by nr orthogonal

vectors. The deflated matrix approach in Eq. (56) can be used to find nr independent vectors. The process of Gram–Schmidt
orthogonalization is then applied to generate nr orthogonal mode shape vectors which have dT

ndk ¼ 0 for nak. These mode
shape vectors have to be checked by Eq. (58) to guarantee low residual. There are many sets of orthogonal vectors that span
the vector space of the modes having repeated roots. For any set of orthogonal vectors solved through the Gram–Schmidt
process, the values of mnk in Eq. (38) are usually negligible for nak and the equations in Eq. (37) are decoupled for the
same frequency but different orthogonal mode shapes.

It should be noted that the deflated matrix approach is different from the Pz method of Ref. [9]. In the Pz method, the
elements dl to dnd�1 are set to zero, and only the elements dl to dl�1 are solved in Eq. (56).

8. Solution of null modes

There is one type of vibration modes of which the natural frequency is also the axial or flexural poles of some beam
elements in the frame. This type of vibration modes is called null modes here, because the corresponding mode shape
vector in Eq. (55) is null, dn=0. Although the determinant of the frame dynamic stiffness matrix becomes infinite at the
natural frequency of null modes, the Wittrick–Williams algorithm is still available to find null modes and solve the
corresponding natural frequencies. The problem of null modes arises from failing to find the correct mode shape functions
for the beam elements owning the poles. For the flexural poles, the shape function in Eq. (3) is not null, but the constants bi

cannot be determined by the null deformations at the ends of beam elements. Similarly, for the axial poles, the shape
function in Eq. (2) is not null, but the constants ai cannot be determined by the null deformations at the ends of beam
elements. Numerically, the mode shape vectors of null modes solved by the deflated matrix approach described above may
have very high residual, which can create wrong shape functions in the beam elements.

For the frame possessing the null modes of flexural poles, these null modes can be eliminated by adding an interior
node at the middle of the beam elements owning the flexural poles [10]. The frequencies of flexural poles are the series of
obn shown in Eq. (42). Added by an interior node, the beam element is divided into two sub elements with the length
L=L(1)+L(2). The frequencies of flexural poles in the two sub elements are

oð1Þbn � nð1Þ þ
1

2

� �2 p2

Lð1Þ
2

ffiffiffiffiffiffiffi
EI

rA

s
; oð2Þbn � nð2Þ þ

1

2

� �2 p2

Lð2Þ
2

ffiffiffiffiffiffiffi
EI

rA

s
(59)

To have obn ¼o
ð1Þ
bn ¼o

ð2Þ
bn , it must be

ðnþ1=2Þ2

L2
¼
ðnð1Þ þ1=2Þ2

Lð1Þ
2 ¼

ðnð2Þ þ1=2Þ2

Lð2Þ
2 (60)
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or

nð1Þ ¼ nþ
1

2

� �
Lð1Þ

L
�

1

2
; nð2Þ ¼ nþ

1

2

� �
Lð2Þ

L
�

1

2
(61)

If L(1)=L(2)=L/2, it is impossible to find an integer value of n(1) or n(2) from any positive integer n. In other words, the
frequencies of flexural poles in the sub elements will never coincide with obn after adding an interior node at the middle of
the beam elements. Therefore, the vibration mode of the frame which has the natural frequency obn is no longer a null
mode. However, if L(1)=L/3 that yields n(1)=(n�1)/3, the natural frequency obn has a flexural pole in the first sub element
when n=4,7,10,y, and the frame still has null modes.

For the frame possessing the null modes of axial poles, the frequencies of axial poles are the series of oan shown in
Eq. (45). After adding an interior node to the beam element of axial pole, the frequencies of axial poles in the two sub
elements are

oð1Þan ¼ nð1Þ
p

Lð1Þ

ffiffiffiffiffiffiffi
EA

rA

s
; oð2Þan ¼ nð2Þ

p
Lð2Þ

ffiffiffiffiffiffiffi
EA

rA

s
(62)

To have oan ¼oð1Þan ¼o
ð2Þ
an , it must be

n

L
¼

nð1Þ

Lð1Þ
¼

nð2Þ

Lð2Þ
(63)

For any specific values of L(1)/L, it is always possible to find some integer values of n that can generate integer values of n(1)

or n(2). In other words, it is always possible to find some frequencies in the series of oan to coincide with axial poles in the
sub elements. Therefore, adding an interior node to beam elements is unable to get rid of null mode of axial poles.

In the null modes of axial poles with frequency oan, the axial force in the ith beam element possessing axial pole has the
form, derived from Eqs. (5) and (44),

NðxÞ ¼ a2EAa cosax¼ ei cosax (64)

with ei ¼ a2EAa being the magnitude of axial force in the ith axial-pole element. The axial forces acting at the ends of the ith
axial-pole element become

N0 ¼�Nð0Þ ¼�ei; N1 ¼NðLÞ ¼ ei cosaL¼ ð�1Þnei (65)

where cosaL¼ ð�1Þn because the corresponding frequency is oan defined in Eq. (45). In terms of the magnitude of axial
force, the shape function in Eq. (44) becomes

wðxÞ ¼ ei

EAa sinax (66)

In the null modes, the displacement vector d cannot be used as variables because it is null. Instead, the magnitudes of
axial force in the beam elements possessing axial pole can be chosen as variables. If the null mode has ne beam elements
possessing axial pole in the frame, the axial-force vector e is a ne-dimensional vector formed by elements ei. After using
Eq. (65) to calculate the end forces of all beam elements possessing axial pole, force equilibriums on all nd unconstrained
degrees of freedom in the frame lead to

Fe¼ 0 (67)

where F is a nd�ne rectangular matrix. Allowing row and column exchanges, the forward Gaussian elimination can
decompose Eq. (67) into

½U V�e ¼ 0 (68)

where U is a ns�ns upper triangular matrix with all diagonal elements being nonzero, and V is a ns�nr matrix with nr

being the number of repeated roots in the null mode and ns=ne�nr. If the null mode is single root, then nr=1. The
ne-dimensional vector e is the axial-force vector, but may have a different ei sequence from the vector e because of column
exchanges. The backward substitution on the matrix U yields

E¼�U�1V (69)

where E, a ns�nr matrix, can be expanded as

E ¼
E

I

� 	
(70)

where I is the nr�nr unit matrix, and E is the ne�nr matrix in which each column is the axial-force vector of each axial-
pole root corresponding to the vector e. Then, the mode shape functions in the beam elements possessing axial pole can be
calculated from Eq. (66).

Although the null modes of flexural poles may be solved by a similar procedure described in the last paragraph, adding
an interior node at the middle of the beam elements as described before seems to be the easier way to get rid of the null
modes of flexural poles.
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9. Numerical examples

9.1. Example 1

The cross frame shown in Fig. 3(a) consists of four prismatic beams with 4 m length. Every beam has the same
properties of E=109 N/m2, r=103 kg/m3, A=10�2 m2 and I=10�5 m4. To prevent the null modes of flexural poles, a node is
added to the middle of each beam. Natural frequencies and mode shapes of the first eight modes are shown in Fig. 4. Modes
2 and 3 are the double-roots modes which have the same natural frequency and orthogonal mode shapes. In these two
modes, the center joint of the cross frame does not rotate but has vertical and horizontal, respectively, translations. The
corresponding generalized mass terms defined in Eq. (38) are m22=1.0, m23=1.985�10�23, m33=1.0. The off-diagonal term
Fig. 3. Cross frames in example 1: (a) without hinge and (b) with hinge.

Fig. 4. The first eight modes in cross frame without hinge: (a) mode 1 (4.850 Hz); (b) mode 2 (7.018 Hz); (c) mode 3 (7.018 Hz); (d) mode 4 (7.038 Hz); (e)

mode 5 (15.72 Hz); (f) mode 6 (19.23 Hz); (g) mode 7 (19.23 Hz) and (h) mode 8 (19.40 Hz).

Fig. 5. The first eight modes in cross frame with hinge: (a) mode 1 (4.850 Hz); (b) mode 2 (7.038 Hz); (c) mode 3 (7.038 Hz); (d) mode 4 (7.038 Hz); (e)

mode 5 (15.72 Hz); (f) mode 6 (19.40 Hz); (g) mode 7 (19.40 Hz) and (h) mode 8 (19.40 Hz).
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m23 is very small. In mode 4, the center joint does not rotate and translate, so that its natural frequency is equal to ob1, the
first flexural pole in Eq. (40) with L=4 m. Similarly, modes 6 and 7 are double-roots modes and mode 8 has natural
frequency equal to ob2, the second flexural pole.
Fig. 6. Axial deformations of null modes of axial poles in cross frame without hinge: (a) mode 24 (125 Hz); (b) mode 25 (125 Hz); (c) mode 39 (250 Hz)

and (d) mode 40 (250 Hz).

Fig. 7. Axial deformations of null modes of axial poles in cross frame with hinge: (a) mode 37 (250 Hz); (b) mode 38 (250 Hz); (c) mode 39 (250 Hz) and

(d) mode 40 (250 Hz).

Fig. 8. Vertical displacements at node 6 of cross frame without hinge under 20 Hz vertical force: (a) continuous mass (2 elements per beam); (b) discrete

mass (4 elements per beam) and (c) discrete mass (40 elements per beam).
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If a hinge is put on the center joint of the frame to limit the translation of the center joint as shown in Fig. 3(b), modes
2–4 become the triple-roots modes and have the same natural frequency of the first flexural pole ob1 as shown in Fig. 5.
The corresponding generalized mass terms defined in Eq. (38) are m22=1.0, m23=1.850�10�17, m33=1.0,
m24=1.157�10�16, m34=3.538�10�17, m44=1.0, which indicates that the off-diagonal terms mnk in Eq. (37) are
negligible, because the three mode shapes are orthogonal. Similarly, modes 6–8 become the triple-roots modes and have
the same natural frequency of the second flexural pole ob2.
Fig. 9. Vertical displacements at node 6 of cross frame without hinge under 40 Hz vertical force: (a) continuous mass (2 elements per beam); (b) discrete

mass (4 elements per beam) and (c) discrete mass (40 elements per beam).

Fig. 10. Two-story frames in example 2: (a) A=10�2 m2 and (b) A=104 m2.
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The axial poles of the beams in the cross frames are oan=125n Hz, calculated from Eq. (45) with L=4 m. For the cross
frame without hinge, the null modes of axial poles are double-roots. Plotted in the perpendicular direction of the beam
axes, Fig. 6 shows the axial displacements of the modes corresponding to frequencies oa1 and oa2. Because a middle node
has been added to each beam, modes 24 and 25 corresponding to frequency oa1 are not null mode and their mode shape
vectors are solved by the procedure described in Section 7. However, modes 39 and 40 corresponding to frequency oa2 are
null mode and their mode shape vectors are solved by the procedure described in Section 8. For the cross frame with hinge,
the null modes of axial poles are quadruple-roots. Fig. 7 shows the axial displacements of the modes corresponding to
frequency oa2.

To study the effect of distributed mass, a vertical harmonic force sinot kN is applied at node 2 of the cross frame
without hinge. The damping properties of the cross frame are z=10�4 and Z=1. The vertical displacement at node 6 is
calculated by the distributed-mass approach and the lumped-mass approach. In the lumped-mass approach, every beam is
Fig. 11. Mode shapes of two-story frame (A=104 m2): (a) mode 6 (7.038 Hz); (b) mode 7 (7.038 Hz); (c) mode 18 (38.03 Hz) and (d) mode 19 (38.03 Hz).

Fig. 12. Vertical displacements at middle of first story in two-story frame (A=10�2 m2) under 20 Hz vertical force: (a) continuous mass (1 element per

beam); (b) discrete mass (4 elements per beam) and (c) discrete mass (40 elements per beam).
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divided into 4 elements or 40 elements. For the input frequency o=20 Hz, Fig. 8 reveals that the response calculated by the
distributed-mass approach only has some variation in high frequency from the response by the lumped-mass approach
using 4 elements per beam, and is the same as the response by the lumped-mass approach using 40 elements per beam.
However, if the input frequency o is increased to 40 Hz, the response calculated by the distributed-mass approach is
completely different from the response calculated by the lumped-mass approach using 4 elements per beam as shown in
Fig. 9. When every beam is divided into 40 elements, the response by the lumped-mass approach is the same as the
response by the distributed-mass approach. For the lumped-mass approach, increasing the number of divided elements in
every beam can reduce the response difference from the distributed-mass approach.
9.2. Example 2

The two-story frame shown in Fig. 10(a) consists of six prismatic beams with 4 m length. Every beam has the same
properties of E=109 N/m2, r=103 kg/m3, A=10�2 m2 and I=10�5 m4. Modal analysis indicates that the frame does not have
any null mode of flexural poles or axial poles. However, if the axial deformation is neglected by increasing the beam area to
A=104 m2 but keeping the same mass per length, i.e. rA=10 kg/m, the frame possesses the modes of which the natural
frequencies equal to the flexural poles obn with n=1,3,5,y. The residuals of these mode shapes are very high, which
indicates that the frame needs additional middle nodes for every beam, as shown in Fig. 10(b), to eliminate the null modes
of flexural poles. Fig. 11 depicts the shapes of modes 6 and 7 which have the same frequency as ob1=7.038 Hz and the
shapes of modes 18 and 19 which have the same frequency as ob3=38.03 Hz.

The frame of Fig. 10(a) is subjected to a vertical harmonic force sinot kN at the center of the second story. The damping
properties of the frame are z=10�4 and Z=1. The histories of the vertical displacement at the middle of the first story for
the input frequency o=20 Hz, plotted in Fig. 12, reveals that the distributed-mass approach has a slight difference from the
lumped-mass approach using 4 elements per beam, and is the same as the lumped-mass approach using 40 elements per
beam. The curves in Fig. 13 are the responses excited by the input frequency o=40 Hz and show a difference between the
Fig. 13. Vertical displacements at middle of first story in two-story frame (A=10�2 m2) under 40 Hz vertical force: (a) continuous mass (1 element per

beam); (b) discrete mass (4 elements per beam) and (c) discrete mass (40 elements per beam).
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distributed-mass approach and the lumped-mass approach using 4 elements per beam. The response calculated by the
lumped-mass approach using 40 elements per beam is the same as the response calculated by the distributed-mass
approach.

10. Conclusion

The dynamic stiffness method is the exact method for the dynamic analysis of plane frames including the effect of mass
distribution in beam elements. Derived from the vibration theory of Bernoulli–Euler beams and including axial
deformation, the dynamic stiffness matrices of beam elements can be robotically assembled to form the dynamic stiffness
of the plane frame from which the natural frequencies of the frames can be accurately determined by the
Wittrick–Williams algorithm. The mode shapes can be found using the deflated dynamic stiffness matrix. If the residual
of the solved mode shape is too high to be accepted, iteration with seeking the new deflated location may be required. For
the modes of repeated roots, the process of Gram–Schmidt orthogonalization can generate the orthogonal mode shapes
that span the vector space of repeated-root modes. The deflated matrix approach for the mode shapes cannot be applied to
the null modes where the deformations at all frame joints are null but the deformations in beam elements are not null. If
the null modes have the flexural deformation in beam elements, adding a middle node to every beam element of the frame
can normalize these modes, i.e., become non-null. However, the null modes having the axial deformation in beam elements
cannot be completely normalized by adding nodes to beam elements, but their axial deformation can be calculated by
using the approach of nodal force equilibrium to find the amplitude of axial force in beam elements.

Orthogonal properties of vibration modes in the Bernoulli–Euler plane frames considering distributed mass have been
theoretically derived, through which the equations of motion in beam elements can be transformed into the decoupled
equations of motion in terms of mode amplitudes. After solving for the transient response of each vibration mode from the
decoupled equations of motion, the frame deformation and element stresses can be calculated by the mode superposition
approach.
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